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ABSTRACT 
, : .  In the inferior of a star as cool and dense as a white dwarf, T4 -< -.. . 4. .* ' - .:> 

L .  

the Coulcuib energies between neighboring nuclei are large compared- 

t o  the kinetic energies of the nuclei. 

t o  vibrate about an eq?rillbrium position and the motion of the 

- *  c 
..* 

Each nucleus is constrained. c$ 
2' 

nuclei In the interior of a white dwarf is similsr t o  the motion 

of the atapPS i n  a solid or llqyid. We prqpose a solid-state method 

far calculathg the rate a t  which a nuclear reaction proceeds be- 

tween fwo identical nuclei Oscillating about adjacent la t t ice  sites. 

An effective potential U(r) derived by analyzing small la t t ice  

vibrations is used t o  represent the influence of the Cou&& fields 

of the latt ice on the motion of the two reacting nuclei. !&e wave 

.. 

Aznction describing the relative motion o f t h e  two reacting particles 

is obtained by solving the ScbrWkqer equation contabx4.q the effec- 
* 

tive @ent ia1  U(c) .  &an this wave flanction, we derive an expression 
e 

for the reaction rate. The rates of the p + p and + reactions 

calculated usiag this solld-state method are typically three t o  ten 
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I. 33iTRomc!rIm 
I 

The motions of nuclei in the interiors of cwl, dense stars resemble the  I 

motion6 of atOme in  s o ~ d s  or liquids. The mean free path between collisions I 

suffered by a aven nucleus 16 much mn8ller than the average distance between 

nuclei and m y  be colppBlpable to the particle's quantum mechanical wavelength. 

Each IluclRuB is therefare forced to oscillate about a fixed position i n  a 

lattice structure. 

I 

I 
1 

Reactions between charged particles in stars are inhibited by the small 

probability of penetrating the cauloprrb M e r  between nuclei. However, the 

probablllty of penetrating the barrier increases rapidly with the energles of 

the colfjrf'Lnn particlee. In most sterS, the effective energies are due pri- 

marily to thermal nuhdoaLs. h SterS a8 cold a6 white d-8, the thermal 

energies alone are too mua3l t o  allow charged particles t o  react a t  signifi- 

cant rates. However, -&e Cmlmib miel of the la t t ice  combined w i t h  the 

gro~nd-stcrte vibrational energy ~f tbe reacting wlciei can, at high densities, 

enable nuclei a t  adJacerrt lattice sites t o  react rapidly even a t  zerotemper- 

ature. 

I 

. 

It is important that one be able t o  calculate the rates of reactions 

occurring a t  high deneities an8 low temperatures, reactions to  which Cameron2 

ha8 applied the name "pycnmuclear." Cameron has suggested that such reac- 

tions might be the Bourne of energy far nova exp&sions. A bowledge of the 

rates of pycnanuclear reactions would also be useful in mathematical studies 

of white dwarfs. 33-a~ the rates of rea.ctiOn6 a t  high densities, one can infer 

certain limitations on the possible colpgoeitions of the interiors and envelopes 

of wbite-d- etare, campoaitiaae vo~ld otherwise be comrpletew ~nlmam.' 

future at-e to mlve stellar lpodele into the white-dwarf state fram 

hlaber tenwrature will also re* detailed knowledge of 
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pycnonuclear reactLon rates. 

I n  thls paper we develsp a method for f inding  the rate a t  which  nuclear 

reactions proceed between particles vibrating about adjacent la t t ice  sites. 

Far reactions between particles with 2 2  2, the solid-state approach applies 

to the temperatUref3 aad densities in Region I of Fig. 1. Figure 1 also shows 

tygical central ferPgereture8 and deneikies far variars types of stars. 

We consider prlmrily reactions in a la t t ice  of identical nuclei, although 

we do suggest a rough model far generalizing the method t o  include reactions 

in lat t ices w i t h  arbitrary colarpositionse A mre accurate treatsnent of reac- 

tioazs In  dense stass with carqpllcated canpositions would require detailed 

analysis of the structures of lattice8 containing more than one nuclear species. 

A t  the hi@ d e ~ ~ i i d e 8  of interest here, the motions of any pair of nuclei 

are strmgly carpled t o  the motions of other nuclei nearby. 

c0rmPut;e the li~e~11 lifetime for 8 reaction between two adjacent nuclei without 

solving the caplete  nmy-body problem exactly, we make the fbndamental assu~np-. 

t ion that the effect of the rest of the la t t ice  on the relative motion of the 

two react- particles can be adequately represented by a s ta t ic  potential 

U(E)~ 

tion factor, In Section IX, we analyze the small vibrations of the la t t ice  

t o  find U(s) .  Then i n  Section IlI, we solve the SchrWinger equetion for the 

wave Atnction characterizing the relative motion of the 4 x 0  reacting particles. 

Having found this wave functian, we derive an expression for the reaction rate. 

Section N confains a discussitxi of the'umitations of the solid-state treat- 

ment. We also consider in Section N the problem of genemuzing the method 

t o  include reactions between porrideatical nuclei. 

numericel reisults far the ra tes  of tbe p + p and P + c12 reactions. 

method piredlcts rates several ardere of au3gnitud.e slower tbap those obtained 

In order t o  

The reaction rate depe- strongly on U(r) through the barrier penetra- 
I )  

In Section V, we present 

our 
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The strong CouUmib forces between nuclei in a la t t ice  great* complicate 

the calculatioa Of reactitm rates at high densitiee. 

Coulcmib forces due t o  mny neighbring particles. 

rate per un i t  volume exsctly, one yould have t o  solve the caanplete maqy-body 

problem including all the U in t h e  lattice. p l i s  many-body problem seems 

tractable only far the case of smell  disphcements of the nuclei f’mm positions 

in a periodic lattice, the case t o  which the phonon approach of solid-state 

Each nucleus experiences 

To coPlp?llte the reaction 

We cannot calculete reaction rates, however, by re- just on the 

phonon thecay t o  describe the motion of nuclei under the influence of la t t ice  

caulopdb Fields. A nuclear reaction between two particles must involve the i r  

a m p r O a w  one another to within a distance of the order of the nuclear 

radius, which is much smaller than bm, the nearest-neighbor distance. The 

phonon theory does nub apply to such large displacements Avan equilibrium. 

We do know, however, that foe small separations between nuclei, the relative 

moticm of the two nuclei ie influenced primarily by a potential Z 2 e 2 r -1 , and 
the forces due to  the rest of the lattice are not imporrtant. 

We assume that the relative mOtiosl of two nuclei oscillating about 

adjacent latt lce eitea can be adeqyately represented by motion in som poten- 

tia v(:). We require that V ( r )  + 8e2r01 as r .c o and we the res~lts of a 
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--l . .  
. L  the phonon analysis t0 deterdm V(r) for muall displacements *om eqpllibrium, 

Le., far r epprodmgtely equal to the vector between the equillbrim pi- 

tians of the two nuclei. kr t h i s  way, one can reduce the many-body problem 

ix1~01- all the nuclei the lattice t o  one involving just  the relative 

au3blon of two pertichs.  E)y proper choice of the potential, we can accurately 

L. 

a 

eppmxhmte the effecte of moticans of the neighboring muclei. 

In this section we treat only identical nuclei, each having mass M and 

charge Ze. We consider the rate a t  which a nuclear reaction proceeds between 

two of these nuclei, labeled 1 and 2. Let the relative displacement of the 

two nmlei be given by f - zl - z2, and l e t  the components of 

and zo !&e maes cbemrcterlzing the relative motIan is given by 

be IC, y, 

P + . O  (n.1) 

Let the eqpillhrium positions of the particles be separated by a distance bm 

the z - d s ,  where bmn is the nearest-neighbar distance characteristic 

of the latwce. me potentiel V(5) acting an the relative mation of the tvo 

nelgbboring nuclei must have a minimum a t  ( O , O , b ~ ) .  Hear the mlnbmm point, 

the putential baa the farm 

if the la t t ice  IS, as expected, synmetric under the aperations (x + -x,y + y), 

of la t t ice  v3bratianS to determine the values of fix and Qze 

We note that the total eff'ectlve potential can be separated into two 

parte, OM representing the.Btatic coulanb Field between nuclei 1 and 2, and 

the atber repmsentiag the erisctioh potentiel due to the ather nuclei in the 
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vu(0,0,0) = 0, (II04b) 

We define the eem of en- by the relation 

Equatiom (1102)-(1105) express all our knowledge of U(r) .  mey determine 
N 

the value and gradient of U(E) a t  the arigin and the gradient and second de- 

rivatives of U(2) a t  (O,O,bm). Equatlars (1102)-(1105) obviously do not 

determine U(5) unlquely for a l l  r, 
N 

we must now ccmsider the effects of our incomplete knowme of U(Z) on 

the calculated reaction rate. It can be shown that the potential U(r) affects 

the reaction rate  main^^ 
.1 

e tmr r ie r  penetration feator P(B),. where 



E - U(O,O,~J - 8e2r C -’. ( n . 6 ~ )  

Far r near rc9 the Quantity U(O,O,r) - E melree an $.raportent contributicm 

to the brkgm?& In Eq.  (lI.6b). F’artu~mtely, for r near r,, the qpantity 

U(O,O,r) - E can be de- accurately fmu *60 (II.2) and (n.3). For 

e v e s  the energy eigenvalue for the state (n ,D ,n ). 
X Y Z  

Equatlon (II.8) accurately establdshes E - V(O,O,bm) for a q  given state, 

while Eqs. (II.2) and (n.3) accurately determine U(O,O,r) - V(O,O,bDL1) for 

r near reo Hence the @ity U(O,O,r) - E is known for r near r,. 

Hovlever,  -80 (II.2)-(IIo5) do nut accurately detenmine U(O,O,r) - E for 

r e r,. Fortunately the integral in EQ. ( I I .~)  doe6 not depend strongly on 

u(o,o,~) - B far 8131811 r, eince 
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B. fattice Dynamtcs 

1. General Discussion 

In this mibeectlcm we use a narmal mode analgsis to show that the relative 

mutlan of particles 1 end 2 can, for m31 displacements, be represented by 

matIan in a oscillator putentiel. We then caqnrte the Freqpencles 

Ox and Qz characterizing the oscillator putential. 

The electrons are highly degenerate a t  the tenpratures and densities to 

which the soUd-state method appliese The energy of the coulolnib interaction 

between an electron a& a nucleue l a  muparable to the average electron 

kinetie energy oply at  dlstancea amall caoqpercd to %he electran's wavelength, 

Cansequently, the f l e w  of i n d l , ,  naalsi OAnnat etgn%fi.cantfy affect 
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the electma wave Amctioae. The electrons can react 0nl)Y to lattice vlbra- 

t i a m  wlfh very lmg wavelengths. By solving the Thr*nns-F'ermi equation for 

where a, I s  the Bahr radius. Since SnequaUty (II.lo) always holds under the 

CanUtiane to which the eolld-state ndel applies, we tiasume a Mfom distrl- 

bution of electrons. 

The potential of the s y s W  of electrons and nuclei is then the sum 

of the followi~g three terms: (1) the electmn-electran potential energy, 

which does not depend significastly 011 the position8 of the nuclei; (2) the 

potential energy of i&macWm between the &farm distribution of electram 

and the Lattice of mtclei; (3) the energy of the ~oulooib interactiorm 

the nuclei themsel.ee 

F=  ma^ displacerppents of the i s l e i  ~rorn their equiubrium positions, 

the patential enerm can be -%ten to good accuracy in the farm 

w - wo + w2, 

pr0ced.,li we can fhl Xnear CamblPStlOPPB Qs of the displacements of the 

H - s ( P % 0 1 + M w % 8 2 ) ,  e a  8 8  S 



. 
ps = WeQe 8 

We shall find in Sec. IV that the solid-state approach applies p r i m a r i l y  

to temperatures p o ~ h  that mol is s m a ~  c a p r e d  to most of the normal mode 

Frequencies. 

llmdt and ~ ~ 8 1 1 1 3 ~ )  ell of the normal 

It I s  therefore reaeonable to cmsider the zero-teqerature 

oscillatars are In their epwrnd states. 

(11.14) 

where A i s  a narrpallzation comtant. Since the Qs are llnear combinations of 

the di~placemearts, the exponent in w. (~t.1.4) co~ld a l ~ o  be written a s  a 

hunogeneous polynomial of s e d  d e r  in the displacements. W e  are interested 

only In the relative rnotion of particles 1 and 2. To find the probability 

distributioa far the relative displacem?zrt of pasticlea 1 and 2, we integrate 

l$I2 mer the displacements of all the nuclei except 1 and 2, and then inte- 

grate over the displacement of the center of mass of particles 1 and 2, The 

successive lntegratlms of lkl over the di6placements do not a l ter  the' general 

Arncflonel fann. Each integr8tIOn field8 a pare exponentla1 with a hoapogeneaus 

2 

of s e e  oodcr LUI the A e a  the lattice invariant 

t ldert2m aperatiocu (x-x,Y',Y)*(X+x,Y++* ard (X+Y,Y+-X), 
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obtain tin express%= of the form 

for the probablUty dietributlar of t h e  r e l a t ive  positions of particles 1 and 2. 

The probability d i 6 t r i ~ i o n  described by Eq.  (II.15) is identical with 

that of a three4awmslorurl hammlc oedUatar in its graund state. Despite 

the caprq?llcated effects of lattice vibratlone on the relative h i a n  of the 

two adjacent nuclei, the probablUty distribu;t iaa for smal l  displacements in 

the rebtive positlone of %he %uo nuclei is the mane as it would be if the 

relauve motion of %he two nuclei were mibJected to a -tic harmornic oscil- 

2. Flnalng the Oecillatm Rwquencles 

We know that far muill dirrplacement;~, the probability amplitude is a 

%hree-dirplensiaral gaussian. The renraining problem is to Fiad the widths of 

the gaussian in the tmmaveme and lcm@tudhal direct%one. The widths m 

related to the oscilhtas ff.equendes by 

r 

if 

The 

. .  

la . .  
. . , . .  
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w * ze(MbJ)'3. (II.17c) 
0 

where 

IPfrese numerical values are expected to be accurate t o  wit- 15 for the 

physical mode1 adopted heree By substituting %so (1I.17a) and (1I.17b) in 

Eqs. (I109b)-(II.Sd) me can Sd the parameters %9 %, and kt in the ex- 

pressiorl far u(g). 

W e  have used the normal d e  analysis of la t t ice  vibrations t o  determine 

the parametem 0% and 

on the relative xwtion of the two reacting particles. In  Sec. III, we solve 

the Gchrtwnger equatfan cOrrtaining V(r) a for the wtrve a c t i o n  of the relative 

mtion of the react- particles. Before proceeding to  solve the Gchr'ddinger 

characterizing the effective p0tentIa.l V(r)  - acting 

-, W8 Should m i d m  two -Latea Wb-0 

30 Nan~moTemPera ture 

We have treated a d y  the case where a l l  the oscillator8 are in thsir  

ground Btates. Far PDOge of the 

applles, nearly a l l  of tM oodJlatam are in fact in their 

-,*M c~lll orlen'llte the 

to wfiich the solid-state model 

states. 

-ayahme of x2 ard (e - b,)2 

I 
I 
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tures, these aoerage ~ c I & & O n  m l u e s  are within about 20$ of those obtained 

4. son with the Static Model 

We have d- the lattice putential U(r) by e x m b l n g  nmnll vibra- 
a 

%loam of %he lat%icee !he sfrools ccmgU.ng beeween the relative motion of two 

tim, 

end 

far the bcc lattice stmctum. 



V(l)  = 9?e2rm1 i y2 + + k’ (x2 i y2). 



. .  

be wriften 





W e  should note that the integration in Eq. (ZU.12a) can be per" r0-d 

readily for the irQortant special case where nx = n = L = M = 0, and the Y 
result is 

a 00 (OJ0)  

Accorrding to Eq, (IILll), 

equation as UZ(a,;r) 

f o r r n e a r b m o  The 

far r near 

(III . l2b) 
fL(nzjr) must sat isfy the stme differential 

T h u s w e f i n d t h a t  bnn* 

Quantity gl(r) is defined by 

We want t o  compare Eqs. (III.13) with the equation fL satisfies for small 

r. A t  small r, we can neglect the anisatropy of the potential and separate 

the sobt ion into radial and angular conponents in the usual way. Then, for 

r << bnn, fL satisfies the equation 

where 

(IXX.14a) 

(IXI.14b) 

It would, of course, be convenient if  fL(nz;r) satisfied the same differ- 

ential  equstion for all r, 0 < r < bnn. We now show that  the radial wave 

iknction approxhate3y satisfies the differential equation 



. ?  

are appro-tely the same for r near baa and that Eqs. (III.1ka) and (III.15) 

are essentially equivalent for small r. Comparing Eqs. (III.13a) and (III.15) 

we note the following facts: 

negligibly small for r near ban pruviding the eqectation value <(z - b,n)2> 
is small ccmrpared to bm2; and (2) the Qusrrtity rfL(nz;r) can be accurately 

approximated by bnn fL(nz;r) for r near bm. It follow that Eqs. (III.13a) 

and (III.15) are essentially the same for r near baa. 

and (III.15) for r <C bnn, we notice that the quantity E 

(1) the term L(L+l)r’2 i n  Eq. (1II.E) i s  

Comparing Eqs. (III.14a) 

defined by w 

is small congared t o  2 pZ?e%-2r01. Thus Eqs. (III.14a) and (III.35) differ 

l l t t l e  far r << bmo We have now established that Eq. (III.lS) holds accurately 

in the limits of large and small r. We assume that it holds approldmately for 

intermediate r. 

The most serious appro-tion involved i n  the use of Eq. (II1.E) for 

for small and intermediate r. One can estimate a l l  r is the neglect of E v 
the resultant error in the calculated reaction rate by adding E 

for small r in the barrier penetration factor of Eq. (IX.6). 

the error in the barrier penetration integral 5 should be less than 2$. 

By making various approxLmations we have sham tha t  the radial wave 

t o  the energy w 
One finds that 

function satisfies E¶. (III.I.5) for all r. 

procedure for integrating ~ q .  (m.15) t o  find fL(nz;r). 

In Subsection IIIC we outline the 

C. The Radial Wave Function 

Our method of sol- E¶. (III.I.5) a p p r o a t e l y  for fL(nz;r) is alge- 

braically ccpapllcated but straightfocrwerd. 

to those due t o  the appmadmations imrolved i n  Eq. (me=) itself. Thus we 

It introduces errors small compared 

17 



only outline the procedure briefly. 

We use the modified WKB Bppro-tion' in  which the centrif'ugal potential 

is represented by (L + 9>2r02 instead of L(L & l)ro2. We determine the normal- 

ization by matching the WKB approximation t o  the harmonic oscillato- A wave 

h c t i o n  for r near ban. The WKB integral ca.nnot be evaluated analytically, 

but it can be ewssed  to a good approxhation aa the surn of two integrals 

which can be calculated exactly. The f'irst integral is the one that appears 

in the WKB approxination t o  a coulasib wave fimction. !Thus the radial wave 

function fL(nz;r) can be wi t t en  as the product of a w o m b  wave function 

and a correction factoro The Ma wave function appearing in fL(nz;r) is 

fLc(E8;r), where 

The relation 

defines the parameter 5, which i s  usua1Iy much larger than one, Thus E* is 

eppromte ly  the energy of a pure Coulomb wave w i t h  classical turning point 

me classical turning point radius defined in Eq. (II.6c) can be expressed rCo 

in the approdmate form 

(mc.19) 

praviding the vibrations are small, 

To find the reaction rate using Eq. (III.9), we must calculate the ra t io  

Q by 

Q Ilm 
r+O I 3 (III.20) 



. 
where E is defined in Eq.  (n.8). The quotient Q is the ratio of the 

Couloarib wave Atnctions for eneraies E* and E multiplied by a correction 

factor. 

We must define faur parermeterS occurring i n  the two coulcrmb wave Amc- 

t i o n s o  ThaelQressions 

express the  wave numbers in terms of the energies, w h i l e  the equations 

q = 8 e 2 a  -2 K -1 (111 .23) 

the caulclaib field paramsters in terprS of the wave numbers. 

We CrmFt also define sone parameters occurring in the correction factor 

that xmiltipues the ratio of the chukxnb wave fbnctiaas. Let 

Then deFine A, B, C ,  and D by the relations 

A = (3/16) (3 E3 + 4 E2 - 4 E) (1 + E) -712 8 

B - (V2.28) (29 t4+ 72 E3+ 24 k2- 32 € - 48)(1+ E) -'I2 

c - (1/24) (9 t2 + 32 t + 8) (1 + E)-3, 

(III.27) 

(III.28) 

(III -29) 

and D = (1/192)(87 t 3 + S 6  E2+356 €+192)(1+E)&. (m.30) 



(III.3la) 

(IIL3l.b) 

(III.32b) 

The quantity Q gives the ratio of the wave function fL(nz;r) to the 

coula~db wave M i o n  far the energy E. we llow use -so ( I I I .~ )  in EQ. (m.9) 

to Find the reaction rate. 

D. The Reaction Rate 

We f i rs t  consider the reaction rate From an initial. state ( n x , z y z )  . 
substituting EQS. (f11.32) i n  EQ. (III. 9 )  yie- 

and rLc(E) is the reaction rate far a pure Ccmhnb wave with energy E. 

To f ind the average Ufet- of a nucleus in  a stellar interior, we must 

perform a thennal aversge over oscillator states .  We shall Find in Section IV 

that  the theory applies only to tenxperatures low enough that 



Thus we assume nx and % are both zero. The sum mer nz must be carried out, 

huwever, due to the skwng dependence of 1' on nz. Consistent w i t h  OUT previ- 

ous asmmq?tioPr of a bcc lattice, we assume each nucleus has eight nearest 

for the inverse lifet3.m. 

In  the important special case of an 6-wave interaction, the reaction rate  

corresponding t0 a CcnUaib wave xlth unit nuuiber density a t  infinity is often 

urrittep9 

(III.36) roc = S(E) VE -1 e -2q , 

where the cross-section factor S(E) can usually be determined fram the results 

of laboratory experiments; it contains all of the purely nuclear aspects of 

the reaction rate- The guaatity v $a Eq. (III.36) is the velocity correspond- 

ing t o  energy E and wave number IC. Using R S o  (II.l?), (III.l2b), ( I I I S b ) ,  

(III.33), and (III.36) in Bq. (IIX.35), one Finds tbat the inverse lifetime for 

an s=wave reaction ia glven by 

(III.37-b) 

The quantities q' and I were defined in Eqs. (m.24) and (III.31), respectively., 

The energy E can be written in the convenient farm 

2 1 -  



Equations (III.35) and (III.37) give the inverse lifetime of a rmcleus 

in a solid lattice of density p. In  Section IV we describe the range of 

teqperahares and densities to which these farmulae apply. 

N o  ~ T I O N S A N D G ~ I O X S  

A. AssMprtian of Identical Particles 

We have cansidered so f a r  only the case of nuclear reactions in a la t t ice  

of identicalpazticles. 

relative- easy evaluation of ban, Ox, and Oz. 

evaluated for 8 medium of moire coxplicated composition, the rest of aur treat- 

nent could immediately be generalized t o  include reactions between nonidentical 

particles. Equation (III.33) holds for nonidentical particles, providing we 
2 interpret p as BI.,,%(Y+IQ-~ and m h c e  z by z1z2 i n  a u  cases. 

The a s s e i o n  of identical particles allowed the 

If these parameters could be 

Accurate evaluation of baa, 2, and Oz is difficult for a nuclear reaction 

in a star of arbitrary coxposition. 

lattice. 

and typical distances between neighboring nuclei o f t h e  reacting species 

could only be estimated accurately by c a r e m  analysis of the energies of 

different gectnetrlcal configurations . 

Such a star does not possess a periodic 

Consequently the phonon technique cannot be used t o  f ind fix and Oz, 

Here we suggest a crude general rule for estimating the nearest-neighbor 

distance between tu0 nonidenticalnuclei. W e  picture the la t t ice  as composed 

of neutral regions, one region for each ion. 

nucleus of charge Z' would have volume Z1ne-', where ne is the electron number 

The neutral region including a 

density. For examgle, consider the case of a nucleus of charge Z1 inibedded 

in a medium of much smaller charges %. We could picture the Charge Z1 a t  the 

center of .a sphere of radius (%1)1/3 ( 4 ~ n ~ ) ' ~ ' .  The sphere would then be 

/ 

surrounded by BPYIU cubes of edge length ZZv3nlv3, each cube containing 



- 
one nucleus and 5 electrum. Accordiag to this crude picture, the nearest- 

ne- distance between nuclei of charge 5 and nuclei of charge Z2 is  given 

also gives a reasonable farnrplls 

for the case where Z1 and 5 are equal. !bus Eq. (N.1) would be a reasonable 

guess for all Z1 2 5. 
We cau make a correqmdingly simple as6~4ption about the lattice poten- 

* t ia l .  We assume U(E) has the farm mggested in EQ. (=.ga), w i t h  % set e w  

t o  2-0 TheIl-80 (ne*) ard. ( n 0 9 C )  that 

2 2 -1 -3 
Qz = 3 ZlZ2e p bnn 

Setting SIx equal to SIz would not cause serious error since the reaction rate 

does not depend strongly on SIx. 

Equations (N.l)-(IV.4) represent only crude estimates of the parameters 

needed for finding a reaction rate In  8 medium of arbitrary canposition. Care- 

fU analysis of lattice coslfiguratioas for variuus ccnqositions might suggest 

more accurate rules. 

B. Assumption of One GValue 

W e  have ass\rmed that one Ini t ia l  value of orbital angular momentum domi- 

nates the reaction rate. Reactions between Ught nuclei are predominaatly 

2 3 '  
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8-wave, but several different orbital angular momenta may be important i n  

reactions between heavier nuclei. Incorrectly asmrming that one &value 

dominates the rate, one may overlook the effects of interference and may 

make errors in the gecmetrical factors am, but such errors are unlikely t o  

amcRult to as much as a factar of ten, The barrier penetration factors for 

reactions between heavy particles range froan about eoS0 to e-15o for the 

conditions to wfiich the solld-&ate model appues. 

knowledge of U(g) and our approrrdmate metbod of solving the Schr’&nger eqya- 

tion, we are llkely t o  make errars of several percent in  the barrier penetra- 

tion exponents. !these e r r y ~ ~ ~  are Ukely t o  be larger than any caused by 

Due t o  our i n c m l e t e  

C. Resonant Reactions 

The treatment outlined above does not apply directly to reactions w i t h  

strong resonances at energies arpamr than about two or thee times 22eZO-’, 

which ranges *an less then 1 keV fF protans a t  lo5 gm/cc t o  several hundred 

keV for carbon nuclei at Urn d c c .  %be widths of the harmonic osciUator 

states are Ukely  t o  be large carpared to the widths of the nuclear resonances, 

To app3y the solid-state treatslent t o  a reaction U e  

which involves lowlying resonances, one wopild have to estimate the widths of 

the osciuator states repuce the sum in Eq. (111.37a) by an integral. 

D o  Ei@;h-DenSity W t  

A t  high densities, the anplltudes of the  ground-state vibrations may 

became coqparable t o  bnn. when this happens, the nuclei no longer form a bcc 

lattice, as asBumed in Sectioms II and III. Several investigators have 

24 . 



. - e6timatkd the "melting density" of a lattice consisting of electrons immersed 
I 

in a uniform distribution of positive charge. 

converted t o  apply t o  the case of a lattice of nuclei in a uniform negative 

charge density. The most recent estimates are those by de Wette." His work 

locates the Y m l .  density I n  the range 

!l!hese estimates can easily be 

where Pm is in d c c .  Earlier -ku indicated a melting density of abaut 

10 2 A d c c .  6 6 4  

Just above the n s l t h g  point, the nuclei farm a f luid rather than a 

periodic lattice, but the matioar is still largely vibrational. In  this l i e d  

range, where the mean free pth between coUisioss is small casrpared t o  bm 

but the vibrations are still too large t o  allow a strictly periodic lattice, 

it still seeins reasonable t o  m a t  t h e  relative motion of two particles using 

the potential of E q .  (n.9). That potential depends on the assuqption of a 

bcc la t t ice  through the paranaeters bm, fix, and fiz. The nearest-neighbor 

distance varies only a few percent Frcmn one la t t ice  structure t o  another. 

frequencies SlX and $lz have been calculated far the fcc la t t ice  and for a 

"smeared-out" la t t ice  Intended t o  resemble a liquid, and the values of Ox and 

ilZ are within about ID$ of the values obtained for the bcc lattice. Thus we 

conclude that the parametere ban, ax, and az are nearly independent of the 

geometrical arrangement of the lattice, although they depend strongly  on the 

density and on the charge and mass of the  nuclei. We therefore hope that the 

values of bm, Ox, and nz far the bcc latt ice also suFfice for the range of 

densities where the nuclei exmarb mnal l  vibrations in a nongeriodic lattice. 

The range of . -  applAcablUty of the farmula could then be extended t o  a density 

The 



- 
- 

givm by the approximate relation 

su 10 6 Z 6 4  A d c c .  
pC 

The above considerations are important mainly for reactions between 
6 pTQtans. A t  densities greater than about 10 d c c ,  a zero-temperature proton 

star could be described more accurately as a degenerate gas than as a solid. 

Thus the solid-state approach f a i l s  t o  apply to protons a t  densities well 

below those expected in neutron stars .  

W e  have also assumed that the nearest-neighbor distance is large canpared 

t o  the nuclear radius. Thus the solid-state model app3ies only if 

E. High-Teqerature Limit 

The temperature enters the expression for the reaction rate through the 

sums over nz in EQS. (IJZ.33) and (III.37). 

given approxinmtely by the relation 

Below a c r i t i ca l  teqerature 

TC, 

TC p* 1200 ZA'l p+, (N.8)  

*ere T~ is in 4c and p is in d c c ,  essentially a u  reactions take place 

f ' r a t h e  pound state. 

the temperature Tc, the first few excited states become inqortant, and the 

rate  begins t o  increase with teqperature. A t  a tergperature just slightly 

above Tc, most reactions take place from unbound states, and the solid-state 

approach fails. 

the Lattice are st i l l  in their ground states because 

Thus far T << Tc, the rate is independent of T. Near 

Just above the crit ical  temperature, most of the nuclei in 

~x(k!Pc)ol *I 2.4, (N*9) 
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and (N.10) 

However, the exceptionaUy energetic nuclei that are most l i k e l y  t o  react have 

enough energy t o  break through the lattice. !be mean free path between COU- 

sions of these unusually energetic nuclei is large compared t o  baa, and they 

can be treated app?oximateJy as gas particles. Salpeter bas developed a 

method for calculating reaction rates for T >> Tc. 

rc 

v. I l l m m I c A L m  

A. prOton-P.roton Reactions 

Eqptions (m.37) have been used to  calcuhte the mean lifetime of the 

protons i n  hyilrogen stars a t  various -ratures and densities. 

were asmned to undergo the reactions 

The protons 

and 

+ &'+e++. 

3 + e- + &. + 

For densities greater than abcnrt lo5 d c c ,  the extreme degeneracy of the 

electrons causes the capture reaction (V.2) t o  dominate the process of hydrogen 

burning. 

Figure 2 shows the temperature dependence of the mean lifetime a t  a 

density of lo5 &cc. Below a critical temperature of abaut 2 X lo5 OK, the 

reaction rate is independent of tenqerature. 

of Salpeter should be accurate. 

Above about lo6 %, the formula 
4 

B. Carbon-Carbon Reactions 

The man ufetimes of C= nuclei i n  stars of pure carbon have also been 
24 camputed. Two carbon nuclei may react to foxm the following products: Mg + y, 



+ H', + n, Ne2* + Xe4, and 0l6 + 2 He4. Eqqtions (III.37) were 

used t o  calculate the mean lifetimes of the carbon nuclei, even though there 

is  no reason t o  expect tha t  the reactions are predoslinantly s-wave. Reeves 

has expressed the rate of the carbon-carbon reactions i n  terms of the cross 

I2 

section parameter S(E). The small errors caused by estimating the geometrical 

factors am incorrectly and by neglecting interference effects should not be 

serious because of the strong density dependence of the reaction rate .  

Figure 3 shows the mean lifetime of a carbon nucleus a t  lo7 %. A t  low 

temperatures the reaction rate is significant for densities greater than about 

lolo gq/cc. !be rate  of the C= + CU reactions depends much more strongly 

on density than the rate of the proton-proton reactions because the barrier 

penetration eqonent I s  much larger for 2 = 6 than for 2 = 1. 

C. Carnparison with Cameron's Method 
2 Cameron has suggested calculatlsg t h e  rates of pycnonuclear reactions 

by treating the system of nuclei as a gas with Coulcnnb interactions between 

the particles. The curves marked llGAS(CAMERON)" in Fig. 3 were computed by 

a method similar t o  that proposed by Cameron, using the same values of the 

cross-section parameter S(E) 9,12 a s  in the solid-state calculation. 

Figure 3 indicates that the solid-state method predicts rates three t o  

ten orders of magnitude smaller than those computed by the gas model. 

large discrepancy in the predictions of the two models is due t o  the different 

The 

estimates of the classical turning point radius, rc, which is an important 

factor i n  the barrier penetration exponent. According t o  the solid-state 

approach, rc is  sUghtly less than the nearest-neighbor distance. According 

t o  Cameron's model of electrostatic screening at  law teqeratures, rc is 

suatu less than the m g e - c m  radius, given by (z1)v3 (4me) 4 3  , 

28 
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where Z1 2 Z2. 

nearest-neighbor distance. 

penetration factor on the classical turning point, this factor of 0.57 causes 

a large difference i n  the predicted rates. However, fur Z1 >> Z2, Cameron's 

charge-cloud radius is approximately equal to the nearest-neighbor distance 

@veri by Eq. (IV.1). Hence CarPsrool's rpetbod and the solid-state method would 

give sintlar predictions for reactions in which one nucleus is much larger 

than the other. 

Far Z1 = %, this charge-cloud radius is only 0.57 of our 

h e  t o t h e  strong dependence of the barrier 

A c K " T s  
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FI- CAPTIONS 

Fig. 1. Central temperatures and densities of various types of stars. 

The solld-state approach t o  nuclear reactions applies t o  Region 

I on the f igure .  In Region II, most nuclear motion is vibra- 

tional, but the nuclei most likely t o  react have enough e n e r a  

t o  break through the latkice. 

move like atolms in a gas, 

degenerate, while in Region IV they are nondegenerate. 

In Regions III and N, the nuclei 

I n  Region IXI, the electrons are 

pig. 2. Predictions of proton ~ e t i m e s  a t  lo5 gn~cc. The ufetimes 

predicted by the method of Salpeter are conpared t o  those con- 

puted by the solid-etete nethod using oscillator trequencies 

obtained by analyzing the dynamlcs of the lattice. 

line indicates a reasonable interpolation between the two 

formulse . 

The dotted 

Fig. 3. Redictions of the Ufetims of protons and C= nuclei. The 

lifetimes predicted by the method of Cameron are compared t o  

those coqputed by the solid-state method using oscillator 

frequencies obtained (1) &om an analysis of lattice dynamics 

and (2) ~IXSZIA an ekctrcmtatic anaIysis. 
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